

===========================================================================                   C A L L I N G   C H M O U S E   

===========================================================================



The resident driver CHMOUSE has two entry points.  One is through a software

interrupt.  This is normally used by assembler language programmers and in

support libraries for compiled high level languages.  The second entry point

is from the BASICA interpreter. The driver also provides emulation of the

light pen so that BASICA programmers can use the light pen functions in BASICA

with CHMOUSE.





Software Interrupt

----------------------

The first entry point to CHMOUSE is through software interrupt 33 hexadecimal

(51 decimal).  The parameter values required by CHMOUSE calls are usually

passed in the registers AX, BX, CX, and DX.  These arguments are referred to

in the remainder of this document as M1%, M2%, M3%, and M4% to retain a

nomenclature consistent with Microsoft's.  Any values returned by CHMOUSE are

returned in the same registers.  Functions 9, 12, 20, 22, 23, and 24 require a

long pointer to be passed in ES:DX.  Function 25 returns a long pointer in

BX:DX.  Function 31 returns a long pointer in ES:BX.  Functions 43-45 use long

pointers in ES:SI.



Example: Calling CHMOUSE via Software Interrupt



     MOV   AX, 0   ; reset mouse function

     INT   33H        ; call CHMOUSE

     MOV   AX, 10 ; set text cursor function

     MOV   BX, 0   ; use software cursor

     MOV   CX, 0FFFFH ; cursor is reverse video box

     MOV   DX, 3300H

     INT   33H      ; call CHMOUSE



As with any call to a loadable driver through the system interrupt vectors you

should check to see that a driver is present before calling the driver or a

system crash may occur.  In DOS 2.1 it is sufficient to check for a non zero

vector.  In DOS 3.0 and above you must check to see that the vector is not

pointing to an IRET instruction (0CF hex). Of course under DOS 3.0 a call to

an uninitialized software interrupt will result in a "null" driver call

instead of a system crash.  You can verify that the mouse driver is

operational by checking the returned values from the mouse "initialize" call,

Function 0.  It is a good idea to reset the CHMOUSE driver with function 0

before making any other calls.



BASIC Interpreter

----------------------

A second entry point to CHMOUSE is provided for users of interpreted BASIC.

This entry point is 2 bytes after the main CHMOUSE entry point and is accessed

by reading the pointer from the interrupt vector table at 33 hex (51 decimal),

adding two, and using the resulting pointer in the BASIC CALL statement. Note

that both a segment value and an offset must be read from the interrupt vector

table.



Example: Calling CHMOUSE via BASIC



100  DEF SEG = 0

110  MSEG = 256*PEEK(51*4+3) + PEEK(51*4+2)

120  MOUSE = 256*PEEK(51*4+1) + PEEK(51*4) + 2

130  DEF SEG = MSEG

140  IF (MSEG = 0 AND MOUSE = 2) THEN GOTO 210

150  IF (PEEK(MOUSE-2) = &HCF) THEN GOTO 210

160  M1% = 0 :  M2% = 0 : M3% = 0 : M4% = 0

170  CALL MOUSE(M1%, M2%, M3%, M4%)

180  REM  THIS INITIALIZES THE MOUSE DRIVER

190  REM  BY CALLING WITH FUNCTION 0

200  STOP

210  REM NO MOUSE DRIVER WAS LOADED!



This example includes a check to see if the CHMOUSE driver is

loaded before the CALL statement in line number 170.  Under DOS 3.0 and above

note that you must PEEK at the location pointed to by the contents of MOUSE -

2 due to the offset of the BASIC entry point from the beginning of CHMOUSE.

Check for an IRET instruction (0CF hex).  You must also execute the DEF SEG =

MSEG instruction before looking for the IRET instruction so that the PEEK

operation occurs in the right segment.



If you are trying to write a BASIC program and all of this is incomprehensible

you should stick to the basic mouse driver functions!



As a final note, all of the parameters M1% through M4% must be

used in every CALL, even if some of them are not needed by CHMOUSE.  The

parameters also must be integer variables, not

constants, strings, floating point numbers, or other data types.



Both the interrupt and BASIC entry points expect integer values for the

parameters and almost no checking is performed on the ranges of the input

values.  Unpredictable results may occur with out of range parameters.



===========================================================================

          C H M O U S E   A N D   T H E   V I D E O   D I S P L A Y

===========================================================================



The CHMOUSE driver keeps track of the video mode by capturing the BIOS

interrupt 10H vector.  As long as you use this BIOS function to set the video

mode, the mouse driver can draw an on screen cursor and keep track of the

cursor position by a special coordinate system.  CHMOUSE uses the coordinate

system specified by the Microsoft standard:



In 80 x 25 text modes each character is 8 x 8 CHMOUSE coordinates. Across the

top line character coordinates are (0,0), (8,0), etc.  The character on the

bottom left of the screen is at (0,192).  In the 40 x 25 text modes each

character is 16 x 8 CHMOUSE coordinates.



In low resolution 320 x 200 pixel graphics modes each pixel is 2 CHMOUSE

coordinates wide and 1 CHMOUSE coordinate deep.  As with the text modes, the

upper left pixel is (0,0).



In high resolution graphics modes such as 640 x 200, 640 x 350, or 640 x 480

pixels, the CHMOUSE coordinates correspond to the actual pixel coordinates:

each pixel is 1-by-1.



The Hercules Graphics Adapter



The size of the Hercules coordinate grid is 720 across x 348 down (the

coordinates are equal in size to the pixels).  The Hercules monochrome

graphics card was never officially acknowledged, and lacks BIOS support.  The

display setup for  Hercules graphics modes is not done via interrupt 10H as

are other standard display modes.  The CHMOUSE driver does support Hercules

graphics, but cannot detect Hercules graphics modes with its interrupt 10H

stub.  Instead your program should use the following Microsoft "standard"

procedure to establish a Hercules mode with the mouse driver:



     1.  Put the Hercules display adapter into graphics mode by

     setting the appropriate registers (consult your adapter's

     manual).



     2.  Store a value in the BIOS data area variable at 40:49h

     that indicates which Hercules page you are using.  Store a 6

     for page 0, or a 5 for page 1.



     3.  Now reset the driver using mouse interrupt 33h function

     AX=0.  The driver now knows that you are in a Hercules

     mode.



CHMOUSE knows that you have left Hercules mode when another "legitimate" video

mode is established via Interrupt 10H.





===========================================================================

              B A S I C   D R I V E R   F U N C T I O N S

===========================================================================



Function 0  Basic      Reset Driver

----------      -----      ------------

Input           M1%    =   0



Output         M1%    =   -1 if the driver is ready

                 	     =   0 if it is not ready

                    M2%    =   number of mouse buttons



This function starts up the driver.  It initializes the mouse hardware and

resets internal driver variables.  Typically, the first mouse call made by an

application will be Function 0.



The mouse driver returns a -1 to indicate a successful initialization.  If it

is possible for the driver to detect the mouse hardware and it fails to do so,

then the value 0 is returned in M1%.



Driver Default State:

Cursor Level                      	= -1 (Cursor is hidden)

Graphic Cursor Shape        	= Up-Pointing Arrow

Graphic Cursor Hot Spot   	= (0,0)

Text Cursor                       	= Inverted Video Box

User Subroutine Call               	= Disabled

Light Pen Emulation                	= On

Mickey to Pixel Ratio (Horizontal) 	= 8 to 8

Mickey to Pixel Ratio (Vertical	= 16 to 8

Cursor range (Horizontal)          	= Full screen

Cursor range (Vertical)            	= Full screen

Motion Counters                    	= 0,0 (cleared)

Button Press Information           	= cleared

Button Release Information         	= cleared







Function 1  Basic      Show Cursor

----------       -----      -----------

Input            M1% = 1



Output        None



This function increments the cursor level counter in the driver.  When the

cursor level equals zero the driver will plot the tracking cursor on the

screen.  Successive calls to Function 1 will not increase the cursor level

above zero.



The cursor level variable is a way for a program to handle multiple levels of

"hiding" the CHMOUSE cursor.  Since the cursor is drawn by the driver whenever

the user moves his mouse it is necessary to "hide" the cursor before altering

the screen under the cursor.  The cursor level counter keeps "hides" and

"shows" nested correctly in complex programs.





Function 2  Basic      Hide Cursor

----------      -----      -----------

Input           M1% = 2



Output      None





This decrements the cursor level counter in the driver.  If the mouse cursor

is displayed it will be removed from the screen.  Successive calls to Function

2 will continue to decrease the cursor level below zero. Thus you must have a

matching "show" for each "hide".





Function 3  Basic      Get Position and Button Status

----------      ------      -------------------------------------

Input           M1%    =   3



Output         M2%    =   Button Status

                   M3%    =   Horizontal Cursor Position

                   M4%    =   Vertical Cursor Position





The Button Status is represented by the 3 lowest bits in M2%.



For mice there are two configurations.  The Microsoft-compatible mice have two

buttons: bit zero represents the left button and bit one represents the right

button.  For each bit a 0 equals "button up" and a 1 equals "button down".

Mouse Systems compatible mice have a third middle button, and its state is

represented by bit 2.



The coordinates returned in M3% and M4% will be in CHMOUSE coordinates as

described on page 5. The CHMOUSE driver automatically changes its internal

operating mode and coordinate system whenever the display mode is changed

through a BIOS INT 10 call.





Function 4  Basic      Set Position

----------      -----      ------------

Input      M1%    =   4

              M3%    =   New horizontal coordinate

              M4%    =   New vertical coordinate



Output      None





This function sets the CHMOUSE cursor to a new position.  The coordinates

should be within the legal range of coordinates for the type of display screen

in use.



In general this function should be avoided  since it is incompatible with the

absolute pointing capability of a digitizing tablet or other absolute pointing

device.





Function 5  Basic      Get Button Press Information

----------      -----      ----------------------------

Input          M1%    =   5

                  M2%    =   Button number (left=0, right=1, middle=2)



Output      M1%    =   Button Status (Same format as function 3)

                M2%    =   Number of button presses since last call

                M3%    =   Horizontal coordinate at last press

                M4%    =   Vertical coordinate at last press





This function provides a count of the number of times a button has been

pressed.  The count is zeroed after each call to the function. Presses are

counted separately from releases.



The CHMOUSE cursor coordinate returned in M3% and M4% is the coordinate at the

moment of the last button press, and may not be equal to the current cursor

coordinate.





Function 6  Basic      Get Button Release Information

----------     -----      ------------------------------

Input         M1%    =   6

                 M2%    =   Button number (left=0, right=1, middle=2)



Output      M1%    =   Button Status (Same format as function 3)

                M2%    =   Number of button releases since last call

                M3%    =   Horizontal coordinate at last release

                M4%    =   Vertical coordinate at last release





This function provides a count of the number of times a button has been

released.  The count is zeroed after each call to the function.



The CHMOUSE cursor coordinate returned in M3% and M4% is the coordinate at the

moment of the last button release and may not be equal to the current cursor

coordinate.





Function 7  Basic      Set Horizontal Coordinate Clipping

------------    -----      ----------------------------------

Input          M1%    =   7

                  M3%    =   Minimum Coordinate

                  M4%    =   Maximum Coordinate



Output      None





This function allows you to set the maximum and minimum values for the

horizontal position of the cursor.  The cursor will be moved into the region

if it is not already there.



If the Maximum Coordinate is less than the Minimum Coordinate they will be

exchanged.





Function 8   Basic      Set Vertical Coordinate Clipping

-------------   -----      --------------------------------

Input           M1%    =   8

                   M3%    =   Minimum Coordinate

                   M4%    =   Maximum Coordinate



Output      None





This function allows you to set the maximum and minimum values for the

vertical position of the cursor.  The cursor will be moved into the region if

it is not already there.



If the Maximum Coordinate is less than the Minimum Coordinate they will be

exchanged.









Function 9  Advanced   Define Graphics Cursor

------------   ------------   ----------------------

Input       M1%    =   9  

               M2%    =   Cursor Active Spot (Horizontal offset)

               M3%    =   Cursor Active Spot (Vertical offset)

               M4%    =   Pointer to Screen and Cursor Mask Bitmaps

(M4% is a long pointer - use ES:DX for assembler interfaces.)



Output      None





This function allows the programmer to define new cursor shapes for the

graphics display modes.  Two bitmaps, each 16 bits square are logically

combined directly with the display memory to create a cursor. The Screen mask

bitmap is ANDed with the screen memory and then the Cursor Mask bitmap is

XORed with the result. For EGA display modes the same operation is repeated

with all of the planes in the display.



Since the logical operations are conducted directly on screen memory the size

of the cursor in pixels varies with the display mode.  For example, in 640 x

200 black and white graphics mode the cursor is 16 x 16 pixels. In the 320 x

200 medium resolution color mode the cursor is 8 x 16 pixels.



The active spot offsets specify the relative position of the cursor bitmap to

the CHMOUSE cursor coordinate. The default offset of 0,0 represents the upper

left corner of the cursor image.  With the default arrow cursor, this is a

point just beyond the arrow's tip.  The offsets must be in the range -16 to

+16.



From BASIC create an integer array BITMAP (15,1) where BITMAP (0,0) to BITMAP

(15,0) define the screen mask and BITMAP (0,1) to BITMAP (15,1) define the

cursor mask.  BITMAP (0,X) is the top element as the bitmap is displayed on

the screen.



Use the first element of the array as M4%:



    M1% =  9

    M2% =  0

    M3% =  0

    CALL MOUSE (M1%,M2%,M3%, BITMAP (0,0))





Function 10   Basic      Set Text Cursor

--------------   ------        ------------------

Input             M1%    =   10

                      M2%   =   0 for software cursor, 1 for hardware cursor

                      M3%   =   Screen Mask (M2%=0)

                                  =   Scan Line Start (M2%=1)

                      M4%   =   Cursor Mask (M2%=0)

                                 =   Scan Line Stop (M2%=1)



Output          None





This function is used to define a cursor in text modes.  Cursor Type selects

either a software cursor if M2% = 0, or a hardware cursor if M2% = 1.



For the software cursor, the Screen Mask, a 16 bit integer, is logically ANDed

with the character and attribute bits stored in display memory and then the

result is logically XORed with the cursor mask.



The format of a character in display memory is:





Bit 0 -7:       Character Code

Bits 8 - 10:    Foreground Color

Bit 11:         1 = Bright, 0 = Normal

Bits 12 - 14:   Background Color

Bit 15:         1 = Blink, 0 = Normal



With appropriate selection of Screen and Cursor masks you can create almost

any type of text cursor.



The hardware cursor is normally defined as a single blinking line.  For the

Color Graphics Adapter each character has 8 scan lines, numbered from 0 to 7

starting at the top.  On the monochrome display each character is 12 scan

lines high.  Thus for the color display the standard single line cursor would

be defined by M3%=7, M4%=7.





Function 11  Advanced   Read Motion Counters

--------------   -----------   ----------------------------

Input               M1%    =   11



Output            M3%    =   Horizontal Counter

                       M4%    =   Vertical Counter



This function provides direct access to relative movement of the mouse in

mouse motion units.  Motion units are proportional to the distance that the

mouse moves.  The ration of units to distance depends on the sensitivity (see

functions 26 and 27) and ballistic gain (see Functions 43 - 45).



Positive counts represent horizontal motion to the right and vertical motion

down.  The counts are signed 16 bit integers, and any overflow is ignored.

The horizontal and vertical counts are zeroed after each call to this

function.





Function 12   Advanced    Define User Subroutine

--------------    ------------    ----------------------------

Input                M1%     =  12

                        M3%     =  Control Mask

                        M4%     =  Long Pointer to User Subroutine (ES:DX)



Output      None



This function defines a set of conditions for which a user defined subroutine

will be called by the CHMOUSE driver.  The user defined subroutine is invoked

when a mouse interrupt occurs and the conditions defined by the Control Mask

are met. The conditions are:



CONTROL MASK BIT       CONDITION

0                      Cursor Position Changed

1                      Left Button Pressed

2                      Left Button Released

3                      Right Button Pressed

4                      Right Button Released

5                      Middle Button Pressed

6                      Middle Button Released

7 to 15             Unused



Setting a Control Mask bit to one enables the condition.  Clearing all bits to

0 will disable all calls.  Be certain to disable the call to your user defined

subroutine whenever you exit from your application. Otherwise the next mouse

motion, whether intentional or not, will cause a call through the now dangling

reference to uninitialized memory.  This particular programming error can be

difficult to detect since the exit from the application can occur due to a

rare DOS fault, such as Disk Not Ready, and your application's subroutine may

remain resident in memory for some time until another program allocates and

uses the memory.



CALLING SEQUENCE:



Your subroutine is called with:



      AX = Event Control Word - Bits set as in the Control Mask with 

           a 1 bit signifying an active event.

      BX = Button Status

      CX = Cursor Position (Horizontal)

      DX = Cursor Position (Vertical)

      DI = Motion Counter (Horizontal)

      SI = Motion Counter (Vertical)



WARNING:

This function should only be used by experienced programmers.  The user

subroutine is called at interrupt level from CHMOUSE with interrupts enabled.

This means that mouse interrupts will occur while your subroutine is active.

CHMOUSE will not recursively call your subroutine, but you must exercise

caution when calling CHMOUSE functions from your subroutine due to the

possibility of changing internal data in CHMOUSE.  Remember also that DOS is

not reentrant.





Function 13   Basic      Light Pen Emulation On

--------------    ------      ------------------------------

Input              M1%   =    13



Output           None





This function turns on emulation of a light pen for users of BASIC. Mouse

motion will be used to simulate a light pen.  Pressing a

button will store the coordinates of the cursor.  Each call to BASIC's PEN

function will return a set of coordinates.



When no mouse buttons are depressed the PEN function will return a "pen up"

status.





Function 14   Basic      Light Pen Emulation Off

--------------    -----        -----------------------------

Input             M1%   = 14



Output          None





This function turns off emulation of a light pen.





Function 15    Basic      Set Scaling

--------------    -----         -------------

Input              M1%    =   15

                      M3%    =   Horizontal Motion Units/8 Pixels

                      M4%    =   Vertical Motion Units/8 Pixels



Output      None





This function sets the scaling factor between the mouse motion units and

screen pixels.  The scaling factors passed in M3% and M4% define how many

motion units correspond to 8 pixels.  The default scaling is 8 horizontal and

16 vertical motion units per 8 pixels.



The scaling values can range from -32768 to 32767.  Negative values will

actually reverse the sense of mouse motion!





Function 16  Advanced   Conditional Off

--------------  ------------   -------------------

Input            AX (M1%)   =  15

                    CX (M3%)   =  upper x screen coordinate

                    DX (M4%)   =  upper y screen coordinate

                            SI         =  lower x screen coordinate

                            DI         =  lower y screen coordinate



Output            None





This function defines a screen region where the cursor will not be plotted.

If the CHMOUSE cursor is within the region when the call is made, or if it

enters the region it will be hidden. A call to function 1 is needed to restore

the cursor.



Function 16 allows your software to update a portion of the screen without

"hiding" the cursor before each screen update.





Function 17

-----------

Function 18

-----------

These functions are not used.





Function 19    Basic      Set Speed Threshold

--------------    -------      -------------------------

Input               M1%    =   19

                       M4%    =   Speed Threshold



Output             None





This function defines a threshold for cursor motion.  When the mouse is moved

faster than this threshold, the scaling between mouse units and screen pixels

is temporarily doubled.  The speed at which this doubling occurs is also

affected by the Double Speed Sensitivity set by Function 26.



The default value of the threshold is 64 motion units per second.  To turn off

the scaling set the threshold to a large number such as 15,000.



For mouse drivers with a version number above 7.00, the Speed Threshold has

been replaced with mouse ballistics, and Function 19 has no effect.





Function 20   Advanced    Exchange User Interrupt Vector

--------------    ------------    --------------------------------------

Input               M1%    =   20

                       M3%    =   New Control Mask

                       ES:DX  =   Long Pointer to New User Subroutine

Output             M3%    =   Old Control Mask

                       ES:DX  =   Long Pointer to Old User Subroutine





This function is intended to be used by pop-up utilities and other programs

that need to temporarily gain control of the mouse driver. By using this

function a pop-up can save the state of the foreground application's Function

12 subroutine and install its own mouse handler.





Function 21  Advanced    Size State Save Buffer

--------------   ------------   ----------------------

Input                M1%    =    21



Output              M2%    =    Size of buffer required to save mouse driver state



This function is intended to be used by pop-up utilities and other programs

that need to temporarily gain control of the mouse driver.  By using functions

21, 22 and 23, a pop-up can save the state of the mouse driver as set by the

foreground application.





Function 22   Advanced    Save Driver State

--------------    ------------   ---------------------

Input                  M1%    =   22

                          ES:DX  =   Pointer to data buffer.



This function copies the mouse driver's internal state variables to a buffer

area so that they can be restored by Function 23.





Function 23  Advanced    Restore Driver State

--------------   ------------    ------------------------

Input                  M1%    =   23

                          ES:DX  =   Pointer to data buffer.



This function restores the internal state variables from the buffer area to

the mouse driver.





Function 24   Advanced   Define Alternate User Subroutines

--------------   ------------   ------------------------------------------

Input                 M1%    =   24 

                         M3%    =   Control Mask

                        ES:DX  =   Long Pointer to Alternate User Subroutine



Output              M1%    =   -1 if error





This function defines alternate user subroutines for mouse events that occur

while Shift, Alt, and/or Ctrl keys are pressed.  Like function 12 the

subroutines are called when the conditions defined by the Control Mask are

met. Conditions are:



MASK BIT           CONDITION

0                  Cursor Position Changed

1                  Button 1 Pressed

2                  Button 1 Released

3                  Button 2 Pressed

4                  Button 2 Released

5                  Shift pressed at button state change

6                  Ctrl pressed at button state change

7                  Alt pressed at button state change

8-15             Unused (reserved)



Setting a Control Mask bit to one enables the condition.  Clearing all bits to

0 will disable all calls.  Be certain to disable the call to your user defined

subroutine whenever you exit from your application. Otherwise, the next mouse

motion will cause a call through the now dangling reference to uninitialized

memory.  These alternate routines will only be called if one of the key

pressed bits is set to one.









Your subroutine is called with:



      AX = Event Control Word - Bits set as in the Control Mask 

           with a bit signifying an active event.

      BX = Button Status

      CX = Cursor Position (Horizontal)

      DX = Cursor Position (Vertical)

      DI = Motion Counter (Horizontal)

      SI = Motion Counter (Vertical)





WARNING:



This function should only be used by experienced programmers.  The event call

is made at interrupt level from CHMOUSE with interrupts enabled.  The same

precautions must be used with function 20 user subroutines as with function 12

subroutines.





Function 25  Advanced   Read Alternate Subroutine Vector

--------------   -----------    -----------------------------------------

Input               M1%    =   25

                       M3%    =   Alternate Event Mask, bits 5,6,7



Output             M1%    =   -1 if Alt. Subroutine vector is undefined

                        M3%    =   Alternate Event Mask

                       BX:DX  =   Alternate Subroutine Pointer





This function is used to read the alternate subroutine vectors established by

Function 24 when a pop-up program wants to save the state of the vectors prior

to defining its own. If M1% = -1 then the particular vector requested is

undefined.





Function 26   Advanced   Set Mouse Sensitivity

--------------    ------------   -------------------------

Input                 M1%    =   26

                         M2%    =   Horizontal Sensitivity

                         M3%    =   Vertical Sensitivity

                         M4%    =   Double Speed Sensitivity

            (all Sensitivity parameters are from 0 to 100)



This function changes the sensitivity setting of the mouse.  See the opposite

page for details.



Function 27  Advanced    Read Mouse Sensitivity

--------------   ------------   -----------------------------

Input                M1%    =   27



Output             M2%    =   Horizontal Sensitivity

                        M3%    =   Vertical Sensitivity

                        M4%    =   Double Speed Sensitivity

            (all Sensitivity parameters are from 0 to 100)



This function reads the mouse's sensitivity setting.  See the opposite page

for details.



ABOUT MOUSE SENSITIVITY



The sensitivity parameters control the effective Dots Per Inch (DPI)

resolution of the mouse.  The Horizontal and Vertical Sensitivity settings

control the ratio between the physical motion of the mouse and the number of

motion units reported by the driver (see Function 15).  As you increase the

sensitivity, the number of motion units for a given displacement of the mouse

increases.  Because the number of pixels that the cursor moves is derived from

motion units, the

mouse becomes more responsive as the sensitivity increases.



The Double Speed Sensitivity controls the scaling of raw mouse movement to

motion units that are compared with the Speed Threshold set by Function 19.

Double speed Sensitivity has no effect with mouse drivers later than version

7.00.



The total responsiveness of the mouse cursor is controlled by a combination of

the sensitivity parameters and the mickey-to-pixel ratio (see Function 15).

Unlike most other mouse parameters that can be set by functions, the

sensitivities are not changed by a mouse reset (function 0).



The default Sensitivity for all three quantities is 50, which corresponds to a

one-to-one ratio between motion units and "ticks" detected by the mouse

itself.  A sensitivity of 70 doubles this ratio and a sensitivity of 30 halves

it:



/S    RATIO        /S   RATIO

0     0            50    1:1

5     1:32         55    5:4

10    1:16         60    3:2

15    1:8          65    7:4

20    1:4          70    2:1

25    3:8          75    9:4

30    1:2          80    5:2

35    5:8          85    11:4

40    3:4          90    3:1

45    7:8          95    13:4

                   100   7:2



Function 28   Basic      Set Inport Interrupt Rate

--------------    ------       ----------------------------

Input             M1%   =    28



                     M2%   =    code for maximum rate:

                             0  =  0 Hz

                             1  =  30 Hz

                             2  =  50 Hz

                             3  =  100 Hz

                             4  =  200 Hz

                   



This function is only active if you are using a Microsoft Inport compatible

mouse.  It sets the maximum interrupt rate, which only occurs when the mouse

is in continuous motion.  (Inport is a registered trademark of the Microsoft

Corporation).





Function 29   Advanced   Set Video Ram Page Number

--------------    ------------   -----------------------------------

Input                 M1%    =   29

                         M2%    =   Video Ram Page Number





Function 29 and Function 30 are used by applications that need to access

multiple display pages in the video memory.  Function 29 sets the value.





Function 30    Advanced     Read Video Ram Page Number

--------------     ------------     -------------------------------------

Input                   M1%    =   30



Output                 M2%    =   Video Ram Page Number





Function 30 reads the value set by function 29.





Function 31  Advanced   Disable Mouse Driver

--------------   ------------   --------------------------

Input                M1%    =   31



Output              M1%    =   -1 if error

                        ES:BX  =   Int 33h vector prior to mouse driver installation





This function attempts to unhook the mouse driver's int 10 stub and the mouse

hardware interrupt vector. It then disables the hardware interrupts for the

mouse and returns the old int 33h pointer so an application can restore the

vector if desired. Usually the old int 33 vector points to a null handler in

the BIOS, or to 0:0.



This function will return an error if it cannot unhook its vectors due to an

intervening stub by another resident program. Check the error flag!





Function 32  Advanced   Enable Mouse Driver

--------------  ------------    ------------------------

Input                 M1%  =     32



Output             None



This function re-enables the driver and re-hooks the int 10 and hardware

interrupt vectors if necessary.







Function 33   Basic      Software Reset

---------------   -----        -----------------

Input            M1%   =    33



Output          M1%   =    -1 if driver installed

                     M2%   =    2 or 3 (the button count)



This function performs the software part of a function 0 reset: Variables that

contain the mouse state are given their default values.  The mouse hardware

and interrupt vectors are not affected by this function.





Function 34   Basic      Set Language Byte

--------------    -----        ----------------------        

Input             M1%    =   34

                     M2%    =   Language number

                              0  =  English

                              1  =  French

                              2  =  Dutch

                              3  =  German

                              4  =  Swedish

                              5  =  Finnish

                              6  =  Spanish

                              7  =  Portuguese

                              8  =  Italian



Output                     None





This function stores a byte value that is interpreted by certain Microsoft

utilities to set the language used.





Function 35    Basic      Read Language Byte

--------------     -----        ------------------------

Input               M1% =  35



Output            M2% =  Language Byte





This function returns the language byte value stored by Function 34.





Function 36   Basic         Get Mouse and Driver Information

--------------    -----           -----------------------------------------

Input             M1%    =   36



Output          M2%    =   Driver version (in BCD)

                     M3%    =   Mouse Type (high byte) and IRQ # (low byte)





This function returns information about the version of the mouse driver and

the type of mouse.  The driver version is the level of Microsoft driver that

the CHMOUSE driver is compatible with.  The version bytes are in Binary-Coded

Decimal (BCD) format.  The high byte is the integer part and the low byte is

the decimal part of the version number.



The interface type returned in M3% high byte is interpreted as follows:         

                   

       1 = 8255-based bus

       2 = serial

       3 = Inport* bus

       4 = PS/2-style mouse port



("Inport" is a trademark of Microsoft, Inc.)



Functions 37-42

--------------------

These Functions are not documented.







BALLISTIC GAIN FUNCTIONS 43-45 (ADVANCED)

=========================================



The industry-standard Microsoft mouse driver starting with version 7.00 has a

feature called ballistic gain.  Ballistic gain is a technique of converting

pointing device motion to screen cursor motion in a way that is nonlinear.

The most useful implementation is to give the mouse "acceleration," so that

moving the mouse quickly causes the motion to be amplified, yet moving the

mouse slowly allows fine positioning of the screen cursor.



The ballistic mouse driver comes with 4 built-in gain profiles: Slow,

Moderate, Fast, and Unaccelerated.  The driver provides a new function, 45,

that allows an application to select between these profiles or determine which

is currently active.  The driver further allows the gain characteristics and

even the names of the 4 profiles to be modified!  To this end, the driver

provides functions 43 and 44 to write and read a gain profile data structure.



We depart from the use of M1% - M4% to describe these advanced functions.



The gain profile data structure requires 324 bytes of storage, broken down as

follows:



     4 x 1 byte lengths for each profile definition

     4 x 32 bytes of "movement" domain data for gain function

     4 x 32 bytes of "factor" range data for gain function

     4 x 16 bytes ASCII data for the name of the profile



This data structure stores 4 distinct sets of profile information, indexed by

a number from 1 to 4.  Each element of the structure is iterated 4 times, one

for each profile.



The length of a profile refers to how much of the movement and factor storage

has meaning.  The length value must be less than 32.



The movement and factor tables have corresponding elements.  They define the

domain and range of a scaling function that varies with the mouse speed.  The

movement values are in raw mouse motion units.  The factor values are scaling

ratios expressed in sixteenths of a unit, e.g. a factor value of 16 represents

a 1:1 scaling.  These tables are to be defined in ascending order.  A mouse

motion equal to or greater than a motion table unit but less than the next

motion unit in the table will be scaled by the corresponding factor.



Mouse motion generally consist of both X and Y movements.  The appropriate

scaling factor is determined by the maximum of the absolute values of X and Y

motion.



Function 43   Advanced   Send Driver New Gain Data

--------------   ------------    ----------------------------------



Input:                AX      =  43

                         BX      =  profile to be active

                         ES:SI   =  pointer to profile data



Return:              AX      =  0 if operation successful

                                     =  -1 if there was a problem



This function defines the mouse ballistic gain for the driver.

     



Function 44  Advanced    Get Gain Data

--------------  -------------   -------------

Input:                  AX     =   44



Return:               AX     =   0 if operation successful

                           BX     =   currently active profile number

                          ES:SI  =   pointer to profile data inside driver



This function allows a mouse application to access the ballistic

gain data currently being used by the mouse driver.





Function 45   Advanced    Set Or Read Gain Profile

--------------    ------------    ------------------------------

Input:                  AX     =   45

                            BX     =   index of ballistic profile to set use (1-4)

                                      =   -1 if function is being used to read current profile index



Return:               AX     =   0 if the operation was successful

                                     =   -2 if there was a problem (like index out of range)

                           BX     =   index of current profile (for entry BX = -1)

                          ES:SI  =   pointer to 16-character ASCII name of profile



Mouse Function 45 is used to set which of the 4 ballistic gain profiles

is currently active in the mouse driver.  The index desired is passed

to the mouse driver in BX.  Function 45 may also be used to read the

index of the currently active profile by passing a -1 in BX.  The index

ranges from 1 to 4 and refers to which of the tables passed by Function 43

defines the mouse ballistics.





           T H E   E G A   R E G I S T E R   I N T E R F A C E

===========================================================================



The CHMOUSE driver intercepts the video BIOS interrupt 10h in order to

determine which video mode is being currently used.  If an Enhanced Graphics

Adapter, or EGA, is installed in the computer, a special set of interrupt 10h

functions is also provided to read and write to the EGA registers.  These

functions start at AH = F0h (well above the range of the real BIOS functions)

and are called the EGA Register Interface.  If no EGA hardware is present, the

EGA Register Interface is not installed.





The EGA register interface is accessed by using the video services software

interrupt INT 10h (16 decimal).  The AH register is used to determine which

function is being called.  The following table summarizes these functions.  A

detailed description of each function will be provided shortly.



AH (hex.)    FUNCTION

   F0        read a single register

   F1        write a single register

   F2        read a range of registers

   F3        write a range of registers

   F4        read a register set

   F5        write a register set

   F6        set all registers to default values

   F7        define default register values

   FA        query for interface version





Why an EGA Interface?

---------------------

The reason for having such a thing lies partly in the nature of the EGA

hardware and partly in the way that the mouse driver draws its cursor on the

screen.  The EGA, aside from having a convoluted register addressing scheme,

also suffers from the major defect that most of its registers are "write

only."  Because you cannot determine what state an EGA register is in by

reading its contents, your program must keep careful track of how the hardware

is set up.  This is fine if your program is the only process using the EGA

hardware, but if you are using a mouse driver (which updates its screen cursor

as part of its interrupt handler) there is trouble.  The mouse driver can

interrupt your program at any point and change the EGA registers when it draws

the cursor.  It cannot restore the state of the EGA because it cannot find out

that state from the registers alone.



This is the problem that the EGA Register Interface attempts to solve.  The

idea is simple: instead of writing values directly to the registers, one

always sets the register values by using the special functions provided.  In

addition to writing the values to the EGA hardware, these functions also copy

the values into corresponding memory locations.  If a program faithfully uses

these functions to set the EGA registers, than the cursor drawing routine can

restore the state of the EGA hardware by looking at the registers' memory

images.



If you think that this is a little too far to go just to have the mouse draw

the cursor for you, we agree!  The additional software layer provided by the

EGA Interface just adds needless processing time to an already slow graphics

interface.  The "bug potential" of a program that uses interrupt driven

graphics is very high.  We recommend that for EGA modes you should keep the

mouse driver cursor hidden, use a cursor drawn by your own routines, and

address the hardware directly.





EGA Registers

-------------

The mouse EGA interface organizes the registers into conceptual groups called

"ports," which correspond loosely to the chips used by the original EGA

hardware.  Each port is assigned a number which is used to reference it when

you use the EGA functions.  The eight valid port numbers are listed in the

table below, along with the name, address, and number of registers in the

port:





  PORT  REGISTER NAME                 # OF REGS    ADDRESS



  0     CRT controller                  		 25        	 3x4h*

  8     Timing Sequence                 		 5         	 3C4h

  10h   Graphics Controller              	9          	3CEh

  18h   Attribute Controller             	20        	 3C0h

  20h   Miscellaneous Output Register   	 1         	 3C2h

  28h   Feature Control Register         	1          	3xAh*

  30h   Graphics Position 1 Register     	1          	3CCh

  38h   Graphics Position 2 Register     	1          	3CAh



  (*  x=D for color modes or x=B for monochrome modes)





Note that the first four ports have multiple registers, while the last four

are single register ports.  The multi-register ports corresponds to a

peculiarity in how the EGA hardware is addressed: a whole series of internal

registers can be addressed through just two externally

addressed registers.  To write to one of the internal registers, you must

first supply a value to an external "index" register that selects which

internal register you want.  Then you write to an external "data" register to

set the selected internal register.  The mouse EGA Interface handles the

details of addressing the hardware, the important thing is that you provide an

index along with the port number when you address ports 0-18h.





Special Cases

-------------

PALETTE REGISTERS.  The standard way to set the color palette is by using BIOS

interrupt 10h, function Bh.  With the mouse driver EGA Interface, however, it

is best to use the provided register write functions to change the palette

registers, which are located on the Attribute Controller chip (see below).

This ensures that the mouse driver software knows about changes to the

palette.





ATTRIBUTE CONTROLLER.  Both the index and data external registers of this

multi-register port (18h) have the same physical I/O address (3C0h).  The

register at this address flip-flops between data and index

each time a value is written to it.  A read of the Input Status 1 register

(color 3DAh, monochrome 3BAh) sets the index/data toggling to the known state

of "index."



The EGA Interface assumes that this toggle is always in the index mode, and

always leaves it in index mode after it has been called.  If your application

needs the Attribute Controller to remain in the data state for any period of

time, interrupts should be disabled for that period to prevent a reset to the

index state by the mouse cursor drawing.  Before setting an Attribute

Controller register with the EGA Interface, your program should first read the

Input Status 1 register (directly!) to set the index state.





INPUT STATUS REGISTERS 0 AND 1.  Reading these registers should be done

directly, not through the EGA Interface.  Status register 0 is at address 3C2h

and Status register 1 is at 3DAh for color or 3BAh for monochrome.





SEQUENCE MEMORY MODE AND GRAPHICS CONTROLLER MISCELLANEOUS REGISTERS.  These

registers cannot be read from or written to using the EGA Interface.  They

must be accessed directly with a special procedure to prevent hardware

glitches that can affect the video RAM operation. To change one of these

registers, follow this procedure:



      1.  Disable interrupts,

      2.  Clear the Synchronous Reset bit (#1) of the Sequence Reset register.

      3.  Write to the register.  The Sequence Memory Mode register is address 

          3C5h, index 4.  The Graphics Controller Miscellaneous register is 

          address 3CFh, index 6.

      4.  Set the Synchronous Reset bit on the Sequence Reset register.

      5.  Enable interrupts.





===========================================================================

           E G A   F U N C T I O N   D  E S C R I P T I O N S

===========================================================================



Function F0h:  Read a Single Register

----------------   ----------------------

Input:      AH = F0h

               BX = index for multi-register chips

               DX = port number (see list above)



Output:   BL = EGA register data

               (All other CPU registers preserved)



This function "reads" data from a single EGA register.  Note that what it

really does is read what was last copied to the memory image of the register

by functions F1h, F3h, F5h, or F6h.





Function F1h:  Write a Single Register

----------------  -----------------------

Input:       H = F1h

              DX = port number (see list above)

               (for single register chips:)

              BL = data

               (for multi-register chips:)

              BL = index of register

              BH = data for register



Output:     BH and DX are trashed, BL and all other registers are preserved.



This function writes a single register to the EGA hardware and also makes a

copy of the data value in a memory location corresponding to the register.





Function F2h:  Read a Range of Registers

----------------   --------------------------------

Input:      AH = F2h

               CH = start index of register

               CL = number of registers to read

               DX = port number (multi-register)

          ES:BX = pointer to a table for the

                 register data. Must be at least CL

                 bytes in length.



Output:        The table is filled with register values.

               CX is trashed, all other registers are preserved.



This function applies only to multi-register EGA ports.  The range is a series

of registers on the same port that have consecutive indexes. Function F3h is

the write counterpart of function F2h.  Both functions F2h and F3h would be

suited to, for example, changing the palette registers on the attribute

controller.





Function F3h:  Write a Range of Registers

----------------   ---------------------------------

Input:      AH = F3h

               CH = start index of register

               CL = number of registers to write

               DX = port number (multi-register)

          ES:BX = pointer to a table of data for the registers. Must 

                 be at least CL bytes in length.



Output:        BX, CX, and DX are trashed, the other registers and the 

                 data table are preserved.



This function writes data to a contiguous range of EGA registers from a table

of byte values.  The register range must be on the same port number and have

consecutive indexes.  The data is written to a memory image of the registers,

as well as to the registers themselves.  Function F2h is the read counterpart

of function F3h.





Function F4h:  Read a Register Set

----------------   -----------------------

Input:      AH = F4h

               CX = number of registers (>1)

         ES:BX = pointer to a table of register entries, each with the 

                 following four-byte data structure:



                  Bytes 1-2:  Port number.

                  Byte 3:  Index value for multi-register ports, 

                           or 0 for single- register ports.

                  Byte 4:  slot for register data



Output:        The data slots in the table are filled in.

               CX is trashed, all other registers are preserved.



Function F4h reads a set of registers from their memory image.  Since both the

port and the index are specified for each register in the table, the registers

need not be contiguous or on the same port.  Function F5h is the write

counterpart of function F4h.





Function F5h:  Write a Register Set

----------------    ------------------------

Input:      AH = F5h

               CX = number of registers (>1)

          ES:BX = pointer to a table of register entries, each with 

               the same data structure as function F5h above.



Output:        CX is trashed, all other registers and the data table are 

               preserved.



This function is the write counterpart to function F4h.  The data values are

written to the specified registers and also copied to the image of the

registers in memory.  The registers do not have to be on the same port and do

not have to be in consecutive order.





Function F6h:  Set All Registers to Default

----------------   ----------------------------

Input:      AH = F6h



Output:        None.  All registers preserved.



Function F6h simulates a "reset" of the EGA registers, setting their values to

a known state.  This state can be specified via function F7h, and thus is not

necessarily the same state as that set by the BIOS when you call interrupt

10h, function 0 to initialize an EGA video mode.







Function F7h:   Define Default Values

-----------------   ---------------------------

Input:      AH = F7h

               DX = port number

          ES:BX = pointer to table of values for registers in the port.



Output:        BX and DX are creamed, the other registers are left intact.



Function F7h allows you to change the default values for EGA registers that

are set when you call function F6h.  Access is done one port at a time with

the ES:BX pointer pointing to a table of byte values for all registers on the

specified port.  The number of registers on each chip is given in the previous

section called EGA Registers.





Function FAh:   EGA Interface Version

-----------------    ----------------------------

Input:       AH = FAh

  	   BX = 0



Output:        If an EGA Interface is installed:

               ES:BX points to a two-byte EGA Interface version number in 

               the mouse driver's memory.  This number is BCD encoded.  The 

               first byte is the integer part of the version number, the 

               second byte is the fractional part, in hundredths.

               If an EGA interface is not present BX remains 0.



This function can be used to verify if the mouse driver's EGA Interface is

present.  CHMOUSE  has the same EGA Interface version number as does the

Microsoft mouse driver.





===========================================================================

                      M A K I N G    I T   W O R K

===========================================================================



The Microsoft Mouse driver, and compatible drivers such as CHMOUSE, include

features which are simple in concept and easy to use and test as well as

features that are complex and difficult to test. The following tips are a

result of our experience as developers of both mouse and tablet driven

applications and the drivers themselves.



1) Keep it Simple - If there is anything we have learned, in all aspects of

programming, it is the advantage of simple designs.  Most applications only

need to use four functions - function 0 to init the driver, function 3 to poll

for positional and button information, and functions 1 and 2 to show and hide

the cursor.  If your application will be used with multiple pointing devices

the less you demand from other drivers the less likely you are to run into

problems.



2) Isolate Driver Calls - Use one procedure to access the CHMOUSE driver.  This

provides an easy way to trace any calls to the driver, and will greatly speed

testing and debugging.



3) Avoid Function 4 - Applications that set the location of the cursor are

fundamentally incompatible with tablets and other absolute pointing devices.



4) Avoid Function 12 - Function 12 creates a process which runs at interrupt

level whenever the mouse moves or a button is pressed. Testing and debugging

interrupt level processes that interact with applications programs is very

difficult.  For example, you must ensure that the interrupt level process is

terminated (by a function 12 or 0 call) before exiting from your program.

That requirement alone requires you to add code to your application to handle

all DOS error terminations such as "disk not ready", control-break, etc.  And

then you have to test all that code, and you'll find that Compaqs don't work

the same as PCs at this level, so you'll add more code, and so on.



5) Avoid using the CHMOUSE driver to draw cursors on EGA boards. The design of

the EGA requires extensive software gymnastics to correctly draw cursors from

an interrupt process such as a mouse driver.  Basically you must use a set of

function calls added to the int 10 BIOS interrupt to manipulate the EGA

registers.  This slows your screen operations considerably, and adds another

layer of complexity which is almost impossible to adequately test.



If you want to tackle this challenge, the chapter entitled "The EGA Interface"

in this manual provides the necessary documentation on how to use the CHMOUSE

driver's EGA functions.  The CHMOUSE driver has an EGA Interface that is fully

compatible with Microsoft's.



In general you should avoid trying to access the EGA card from interrupt

processes, including mouse drivers and CHMOUSE.  Instead, we recommend that you

use mouse function 3 to get the location of the cursor and plot your own

cursor.





�


